
Software Architecture Themes
in JPL’s Mission Data System1

Daniel Dvorak, Robert Rasmussen, Glenn Reeves, Allan Sacks

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

818-393-4109
{dldvorak,rrasmssn,greeves,asacks}@pop.jpl.nasa.gov

1 0-7803-5846-5/00/$10.00 © 2000 IEEE

Abstract—The rising frequency of NASA mission launches
has highlighted the need for improvements leading to faster
delivery of mission software without sacrificing reliability.
In April 1998 Jet Propulsion Laboratory (JPL) initiated the
Mission Data System (MDS) project to rethink the mission
software lifecycle⎯from early mission design to mission
operation⎯and make changes to improve software
architecture and software development processes. As a
result, MDS has defined a unified flight, ground, and test
data system architecture for space missions based on object-
oriented design, component architecture, and domain-
specific frameworks. This paper describes several
architectural themes shaping the MDS design and how they
help meet objectives for faster, better, cheaper mission
software.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. THE MISSION DATA SYSTEM PROJECT
 3. THE MDS VISION
 4. ARCHITECTURAL THEMES
 5. CUSTOMER BENEFITS
 6. RELATED WORK
 7. ACKNOWLEDGEMENTS

 1. INTRODUCTION
JPL’s deep space missions tend to be one-of-a-kind, each
with distinct science objectives, instruments, and mission
plans. Until recently, these missions were spaced years
apart, with little attention to software reuse, given the
relatively rapid pace of computer technology and computer
science. Also, since radiation-hardened flight computers
remain years behind their commercial counterparts in speed
and memory, flight software has typically been highly
customized and tuned for each mission. Thus, when JPL
launched six missions in six months between October 1998
and March 1999, it wasn’t surprising that there was little
software reuse among them, except in the ground system.

However, despite the uniqueness of each mission, they each
had to independently design and develop mechanisms for

communication, commanding, attitude control, navigation,
power management, fault protection, and many other
standard tasks, yet there was no common architecture or
frameworks for them to build upon. Clearly, in an era of
monthly missions, this is an inefficient way to use software-
engineering resources.

Another change affecting our approach to deep space
mission software is the advent of high performance,
commercially standard flight computing systems suitable
for flight use. Sufficient capability now exists to justify
investing a substantial part of the system resources to
reusable designs and “off-the-shelf” components, which are
typically not as efficient as customized code. This
additional capability is also a timely boost to increased
autonomy that new missions require as we move into an era
of in situ exploration.

 2. THE MISSION DATA SYSTEM PROJECT
In order to use software-engineering resources more
effectively and to sustain a quickened pace of missions,
while supporting the steady advances required by new
missions, JPL initiated a project in April 1998 to define and
develop an advanced multi-mission architecture for an end-
to-end information system for deep-space missions. The
system, named “Mission Data System” (MDS), addresses
several institutional objectives: earlier collaboration of
mission, system and software design; simpler, lower cost
design, test, and operation; customer-controlled complexity;
and evolvability to in situ exploration and other autonomous
applications. JPL’s Telecommunication and Mission
Operations Directorate (TMOD) manages the MDS project.

3. THE MDS VISION
Software development for space missions is obviously part
of a much larger endeavor, but software plays a central and
increasingly important system role that must be reconciled
with the overall systems engineering approach adopted by a
project.

Appears in Proceedings of
2000 IEEE Aerospace
Conference, March 2000.

Software and systems engineering are highly interdependent
for two reasons. First, software needs systems engineering
products. It must know how things work. It needs to
understand interfaces. And it has to honor the system
engineer’s intentions. Second, software is essential to
systems engineering. It largely determines the behavior and
performance of a system. It manages the capabilities and
resources of a system. And it presents one’s operational
view of a system.

To put it in another way, both systems engineering and
software deal in the more abstract aspects of a system.
These are issues that apply from the earliest conception of a
mission until the last day of flight operation. They apply
across all constituents of a project and to all elements of the
environment affecting the system. Therefore, it is essential
that systems and software share a common approach to
defining, describing, developing, understanding, testing,
operating, and visualizing what systems do. This is the
fundamental vision and philosophy behind the MDS design:
that software is part of and contributes substantially to a
new systems engineering approach that seamlessly spans
the entire project breadth and life cycle.

This paper describes several architectural themes shaping
the MDS design. These themes have been highlighted
because they have broad impact on the design and because
they differ from earlier practices. However, the themes are
not novel ideas; they draw proven ideas from control
systems, robotics, data networking, software engineering,
and artificial intelligence.

Although most of these themes have resulted from a desire
to improve flight software⎯and have compelling examples
there⎯they apply equally to ground software. Also, these
themes apply equally to all kinds of robots, whether
spacecraft or probes or rovers.

4. ARCHITECTURAL THEMES
Theme: Take an Architectural Approach

Construct subsystems from architectural elements, not the
other way around—It has been traditional in JPL missions
to divide the work along at least five dimensions: flight—
ground—test, design—test—operations, engineering—
science, downlink—uplink, and subsystems (navigation—
power—propulsion—telecom, etc). With the work so
compartmentalized, software engineers naturally applied
their own customized solutions within each realm, resulting
in minimal reuse and requiring many iterations at
integrating the subsystems. The net result was always
architecture constructed from subsystems.

In MDS there is a quest to identify common problems and
create common solutions that can then be tailored to
particular problems. We refer to this collection of common
solutions as the MDS framework. It provides shared core
elements among different systems, eliminates redundant or
conflicting developments within systems, and assures
uniformity across the architecture in order to improve
operability and robustness. In the spirit of DARPA’s
Domain-Specific Software Architecture (DSSA) Project [1],
the MDS project is designing a reference architecture, i.e.,
a software architecture for a family of applications in a
domain.

Object oriented analysis and design contribute to the
architecture to some extent, but a fundamental driver in this
approach has been the recognition that space system designs
are always tightly coupled, despite best attempts. Highly
constrained resources demand it. A key software role is to
make this coupling manageable. Therefore, managing
interactions is also a foundation of good design. For
example, different activities in different subsystems issue
commands that consume power, and they can potentially
interfere with each other unless there is a coordination
service that keeps track of available power and that has
authority to control each device. Creating such a
coordination service enables a cleaner simpler design

Figure 1. In the traditional approach, subsystem teams worked in isolation and created individual solutions to
shared problems. In the architectural approach they apply standard MDS frameworks and services.

 Propulsion

Data

Planning &

Monitorin

Fault

••

 Thermal

Data

Planning &

Monitorin

Fault

••

 Telecom

Data

Planning &

Monitorin

Fault

••

 C&DH

Data

Planning &

Monitorin

Fault

••

Data Management

Planning & Control

Monitoring

Fault Protection

••

MDS Toolkit

Execution & Planning

Data Management

Abstract Hardware

OS
•••

GN&

Power

Propulsion

Telecom

Thermal

••

GN&C

Data Transport

because it controls interactions through a common service
rather than through private subsystem-to-subsystem
agreements, thereby decreasing the apparent coupling
between subsystems. It similarly simplifies unit testing of
subsystems. The net result from applying this approach is
that subsystems get constructed from architectural elements,
not the other way around.

Theme: Ground-to-Flight Migration

Migrate capability from ground to flight, when appropriate,
to simplify operations—MDS takes a unified view of flight
and ground tasks because of opportunity and need. With
increasingly powerful flight processors the opportunity
exists to migrate to the spacecraft (or rover) some functions
that have traditionally been performed on the ground,
thereby reducing the need for flight-ground communication.
Such migration might occur well after launch, after ground
operators have gained experience with the real spacecraft
and have decided that some activities can be automated,
without further human-in-the-loop control. Migration can
involve using the same code in flight as on the ground, but
frequently flight implementations are different because they
exploit the immediacy of their interaction with the
spacecraft. Nevertheless, uniformity in addressing other
system elements permits these migrations to take place with
minimal perturbation to the rest of the system.

More importantly, the need for such migration exists in
order to accomplish missions that must react quickly to
events, without earth-in-the-loop light-time delays, such as
autonomous landing on a comet, and rover explorations on
Mars. By adopting a unified architecture, we assure that the
wide range of possibilities offered by these missions can be
accommodated with a single MDS framework. For these
reasons both flight and ground capabilities must be
designed for a shared architecture.

Theme: State & Models are Central

System state and models form the foundation for
information processing—MDS is founded upon a state-
based architecture, where state is a representation of the
momentary condition of an evolving system and models
describe how state evolves. Together, state and models
supply what is needed to operate a system, predict future
state, control toward a desired state, and assess
performance.

System states include device operating modes, device
health, resource levels, attitude and trajectory, temperatures,
pressures, etc, as well as environmental states such as the
motions of celestial bodies and solar flux. Some aspects of
system state are best described as functions of other states;
e.g., pointing can be derived from attitude and trajectory.

The totality of state representations, largely organized
hierarchically within control systems, should provide a
complete representation of the total system (“complete” in
the sense of providing adequate knowledge of state for all

control purposes). While there may be elements of a project
outside the MDS purview, the external elements are
described at least by their visible behavior. In all cases, state
is accessible in a uniform way through state variables, as
opposed to a program’s local variables.

State evolution is described on state timelines, which are a
complete record of a system’s history (“complete” to the
extent that the state representations are adequate, and
subject to storage limitations). State timelines capture
current and past estimates, future predictions and plans, and
past experience. State timelines provide the fundamental
coordinating mechanism since they describe both
knowledge and intent. This information, together with
models of state behavior, provides everything needed to
predict and plan, and it is available in an internally
consistent form, via state variables.

State timelines are also the objects of a uniform mechanism
of information exchange between flight and ground, largely
supplanting conventional engineering data traffic in both
directions. For instance, telemetry can be accomplished by
relaying state histories to the ground, and communication
schedules can be relayed as state histories to the spacecraft.
Timelines are relatively compact representation of state
history, because states evolve only in particular and
generally predictable ways. That is, they can be modeled.
Therefore, timelines can be transported much more
compactly than conventional time-sampled data.

Figure 2. System state is the architectural centerpiece
for information processing. State is a representation of
the momentary condition of an evolving system.

Theme: Explicit Use of Models

Express domain knowledge explicitly in models rather than
implicitly in program logic—Much of what makes software
different from mission to mission is domain knowledge
about instruments and actuators and sensors and plumbing
and wiring and many other things. This knowledge includes
relationships such as how power varies with solar incidence
angle, conditions such as the fact that gyros saturate above a
certain rate, state machines that prescribe safe sequences for
valve operation, and dynamic models that predict how long
a turn will take. Conventional practice has been to develop
programs whose logic implicitly contains such domain
knowledge, but this expresses the knowledge in a “hidden”
form that is hard to validate and hard to reuse. In fact, it is
often hard to discern even that some assumed domain
knowledge has been applied. One might see in the code, for
instance, that an important command is issued twice and
gather nothing further from it. Behind this innocent act,
however, is a presumed attempt to be sure the command
takes effect, which implies further that commands are
assumed unreliable, but not so much so that the likelihood
of a second failed command is acceptably small. This leads
one immediately into questioning the nature and validity of
this assumed model, which is nowhere to be found.

In contrast, MDS advocates that domain knowledge be
represented more explicitly in inspectable models. Such
models can be tables or functions or rules or state machines

or any of several forms, as long as they separate the
application-specific knowledge from the reusable logic for
applying that knowledge to solve a problem. The task of
customizing MDS for a mission, then, becomes largely a
task of defining and validating models.

Theme: Goal-Directed Operation

Operate missions via specifications of desired state rather
than sequences of actions—Traditionally, spacecraft have
been controlled through linear (non-branching) command
sequences that have been carefully designed on the ground.
Moreover, most commands only specify actions to take —
usually in an open loop manner, and often under
assumptions of a particular prior state. Such design is
difficult for two reasons. First, ground must predict
spacecraft state for the time at which the sequence is
scheduled to start, and that’s difficult to know with
confidence because of flight/ground communication
limitations (data rate and light-time delay). Second, in the
event that the actual spacecraft state is significantly
different than the predicted state at any time during
execution, the sequence should be designed to fail rather
than chance doing something harmful. This is usually
accomplished outside the sequence in a separate concurrent
fault monitoring system, which then steps in after the
sequence is terminated to impose a substantially different
model of control on the system — one generally
incompatible with sequencing.

Figure 3. This diagram emphasizes several architectural themes: the central role of state knowledge and models, goal-
directed operation, separation of state determination from control, and closed-loop control.

MDS, in contrast, controls state⎯both flight and ground
state⎯via “goals”. A goal is defined as a prioritized
constraint on the value of a state variable during a time
interval. The time interval is allowed to float, subject to
temporal constraints. A goal differs from a command in that
it specifies intent in the form of desired state. Such goal-
directed operation is simpler than traditional sequencing
because a goal is easier to specify than the actions needed to
accomplish it. Importantly, goals specify only success
criteria; they leave options open about the means of
accomplishing the goal and the possible use of alternate
actions to recover from problems. A goal is a unifying
concept that encompasses daily operations, maintenance
and calibration, resource allocation, flight rules, and fault
responses. Of course, all of this begs the question of who or
what elaborates a goal into a program of actions, which
brings us to goal-achieving modules and closed-loop
control.

Theme: Closed Loop Control

Design for real-time reaction to changes in state rather
than for open-loop commands or earth-in-the-loop
control—Goal-directed operation implies closed-loop
control because a goal, like a “set point” for a conventional
controller, only specifies desired state, but not the actions
needed to accomplish it. In MDS goals are issued to goal-
achieving modules (GAMs). A GAM controls state by
comparing estimated state to desired state, then deciding
how to change the state if necessary, then issuing either sub-
goals (with appropriate temporal constraints) to lower-level
GAMs or issuing direct low-level actions (i.e., primitive
actions). When a GAM accepts a goal it takes on the
responsibility to either achieve the goal or report that it
cannot. A GAM’s logic can be arbitrarily simple or
sophisticated, but it must always keep the goal issuer
informed about the goal’s status.

Many GAMs achieve their goals by issuing sub-goals,
creating a hierarchy of GAMs based on delegation of
control. Naturally, the bottom layer of GAMs issues only
primitive actions. Importantly, GAMs can report why they
acted as they did in terms of differences between estimated
state and desired state (both available on state timelines),
and what sub-goals or commands were issued in response.

A GAM is inherently self-checking, by definition, since it
must monitor whether it is achieving each goal that it has
accepted, keeping goal status up-to-date. During system
testing this self-checking nature of GAMs considerably
simplifies the job of analyzing test results; unexpected goal
failures and unexpected goal successes (as when running
fault scenarios) highlight areas for human inspection.
Similarly, during mission operation, system behavior can be
largely understood through the status of goals in a control
hierarchy.

Theme: Real-Time Resource Management

Resource usage must be authorized and monitored by a
resource manager—“Resources” are things like available
battery energy, power, fuel, memory, thermal margin, etc.
They are any state, in fact, that is affected by other states in
a potentially conflicting way. Overuse of spacecraft
resources can be disastrous, such as accidentally using too
much power near the time of a critical orbit insertion
maneuver, causing the spacecraft power bus to trip. For
reasons like this ground operators have tended to be very
conservative about resource usage, especially given their
time-delayed knowledge of it. However, such conservative
operation limits the amount of science data acquisition and
return, especially during periods of great opportunity, such
as during a fly-by or a short-lived science event.

MDS avoids this kind of operational dilemma through a
resource management mechanism that prevents overuse,
even if a resource is accidentally oversubscribed.
Specifically, resource-using activities are forced to obtain a
“ticket” in order to use a given resource, much as one
obtains a file descriptor in order to access a file. An activity
must state to a resource manager the amount of resource
and the time interval when it is needed, and the ticket is
issued only if the usage does not conflict with any other
higher-priority usage. Further, if measurements show that
more of a resource is being used than was ticketed (such as
might occur from an unexplained power drain), the manager
can disable one or more tickets until an adequate margin is
recovered. Because a resource manager always knows the
available amount, other activities can be triggered to
opportunistically use the resource, thereby increasing
science data return.

A resource manager is just another GAM, except that it
deals in constraints on allowable states instead of
constraints on the state itself. Issuing a ticket is the means
by which it exercises this control. By treating resource
management in this way it becomes a participant in the
larger state coordination process, rather than a separate
additional mechanism.

Theme: Separate State Determination from State Control

For consistency, simplicity and clarity, separate state
determination logic from control logic—It’s not unusual to
see software that co-mingles control logic with state
determination logic, but this practice is usually a bad idea
for three reasons. First, if two or more controllers each
make their own private determination for the same state
variable, their estimates may differ, potentially leading to
conflicting control actions. Second, mixing two distinct
tasks in the same module makes the code harder to
understand and less reusable. Third, these two tasks are an
ill fit in the same module because control has a hierarchical
structure based on delegation whereas state determination
has a network structure based on pathways of interaction
mechanisms (electrical, thermal, etc.).

Architecturally, MDS separates state determination from
state control, coupled only through state variables. State
determination is a process of interpreting measurements to
generate state knowledge, and the process may combine
multiple sources of evidence into a determination of state,
supplied to a state variable as an estimate. Control, in
contrast, attempts to achieve goals by issuing commands
and sub-goals that should drive estimated state toward
desired state. Keeping these two tasks separate simplifies
design, programming, and testing, and also allows for
independent improvements.

An added benefit is to avoid the temptation often
encountered in designs to warp an estimate to meet the
objectives of control. For instance, in order to attenuate a
controller’s superfluous reactions to noise, an estimate
might be smoothed by lowering gains in the estimator. Not
only does this link competing performance criteria in a
single parameter, but now the system is deprived of
accurate information about this state. Keeping state
determination separate does not prevent this distortion, but
it does express state knowledge in a public and uniform
manner that permits a consistent pattern of testing designed
to identify such breaches.

Theme: Integral Fault Protection

Fault protection must be an integral part of the design, not
an add-on—Fault protection, which includes fault detection,
localization, and recovery, has generally been treated as an
add-on to a basic command & control system. As such, it
was designed as an adjunct to the control system and
usually arrived later in the project cycle. Such was the case
for the Cassini attitude and articulation control system, and
an interesting thing happened when fault protection was
first enabled: numerous faults were detected in a control
system that had already undergone a fair amount of testing.
The Cassini AACS team learned more in that month than
they had in the previous six months because they finally had
independent detailed monitoring of system behavior.

In MDS fault protection will be an integral part of the
design⎯not an add-on⎯because it is an essential part of
robust control and because it is extremely valuable during
system testing. Goal-achieving modules in MDS need at
least some minimum level of fault detection since they must
report when an active goal is not being achieved. GAMs
may also provide recovery strategies ranging from very
simple to very sophisticated. In any case, this is always
accomplished entirely within the same context and
framework as normal operations, and it permits fault
recovery that restores disrupted operations. Re-establishing
a sequence after a fault is no longer a heroic effort. It is
simply the way the system works all the time.

Theme: Acknowledge State Uncertainty

State determination must be honest about the evidence;
state estimates are not facts—State values are rarely known
with certainty, but a lot of software effectively pretends that
they are by treating state estimates as facts. However,
disastrous errors can result when control decisions are based
on highly uncertain state. For example, it is probably
unwise to perform a main-engine burn when the estimated
position of the engine gimbals is below some minimum
certainty. Uncertainty can arise in several ways, sometimes
as conflicting evidence, sometimes through characteristic
degradation of sensors, and sometimes during periods of
rapid dynamic change.

MDS takes the position that a level of certainty should
accompany every state estimate. State determination must
be honest about what the evidence is telling it. If there are
two credible pieces of evidence that conflict, and there’s no
timely way to reconcile the conflict, then the resulting state
estimate must have an appropriately reduced level of
certainty. Similarly, control must take into account the
certainty level of the state estimates upon which it is basing
a decision. If certainty drops below some context-specific
minimum, then control must react appropriately, perhaps by
attempting an alternate approach or by abandoning a goal
entirely.

Table 1. Fault protection is an integral part of
design, not an add-on; its elements appear
throughout the architectural elements.

General:
 event logging
 assertion violations
 out-of-memory

Models:
 error states
 anomalous transitions
 failure probabilities
 failure modes

State Determination:
 estimate uncertainty
 fault detection
 diagnosis
 health states

State Control:
 safety goals
 reactions to abnormal

states
 reporting goal failures
 replanning

Figure 4. An architecture that doesn’t express the
amount of uncertainty in state estimates prevents
control systems from exercising caution during
periods of higher-than-acceptable uncertainty.

Damned
if you

Damned
if you

Uncertainty can be expressed in a number of ways, ranging
from complete probability distributions to a simple
enumeration of possible values. It isn’t essential that the
representation be rigorously statistical; often a heuristic
criterion will do. The only rule is to represent the
uncertainty in state knowledge effectively.

Theme: Separate Data Management from Data Transport

Data management duties and structures should be
separated from those of data transport—Flight/ground data
management has long been tightly coupled with data
transport issues, largely because such capabilities evolved
from a time when flight processors were extremely limited.
This resulted in an architecturally flattened implementation
approach where, for example, application code was built
around the CCSDS packet format. While such designs had
some justification in the speed and memory constraints of
earlier missions, the time has come to adopt a cleaner
layered separation and prepare for the day when spacecraft
are in fact nodes in an inter-planetary network.

MDS clearly distinguishes between data management and
data transport. The former elevates data products as entities
in their own right, as objects and files that can be updated
and summarized and aged, and that may or may not be
destined for the ground or some other recipient. In fact, data
management is a service that transcends the flight-ground
divide so that data products are treated consistently in all
places. Data transport, in contrast, can access any data
product and serialize it for transport between flight and
ground. Packet formats and link protocols are completely
hidden from the level of data management. Decoupling
these two capabilities keeps the design and testing simpler
for each and allows for independent improvements. In this
area MDS applies a layered organization [3].

The separation of data management and data transport also
allows more intuitive management of the spacecraft to
ground link. For example, in Mars Pathfinder the majority
of the telemetry data was images of the surface of Mars.
These images were identified uniquely in the planning
process, the commands to create them sent to the spacecraft
(the commands included the image identifier), and the
onboard software took the image and created a data product.
The image data product consisted of the image (raw or
compressed), the image identifier, the time the image was
taken and other ancillary information such as the exposure
time, filter wheel position, etc. The onboard software then
broke the image data product into CCSDS packets that were
stored until sent as telemetry. The data transport system,
both on the spacecraft and on the ground, coordinated the
retransmission of lost or missing elements of the packet
stream. When a missing packet was detected a request
(command) could be sent to the spacecraft to effect the
retransmission. Unfortunately, this mechanism proved very
hard to manage because the mapping from packet sequence
number to image identifier was difficult to determine and
because of the spacecraft/Mars/Earth alignment dictated a

single telemetry session per operation. Furthermore, the
importance of a specific image to the overall science
objectives would change based on the importance of the
subsequent days’ activities.

A further value in decoupling occurs due to the fundamental
difference in nature of these two domains at the level of
system coordination. In its fullest realization, space data
transport must take its place as a peer in the larger data
transport network covering everything from local hardwire
communication within a system, to proximity links between
sister vehicles, to lander-orbiter links at another planet, to
links between planets. Spanning this vast range with its
attendant physical exigencies makes quality of service a
vital component of any data transport framework that is
attempting to pull such a network together. Quality of
service, in turn, must be a visible participant in the
coordination of system activities, whether it be configuring
radio equipment, pointing an antenna, or evaluating link
characteristics. As prescribed, this is accomplished through
goals. That is, quality of service is a state.

Data management, too, resides in a physical realm that links
its actions to the rest of the system and demands that it
participate in coordination processes. In this case the status
of data products (existence, content, size, importance,
location, and so on) collectively comprise a set of states.
Since the goal of most JPL missions is the collection of
data, goals on these data product states become the key
driver to most other mission activities. Interactions and
trades between them can be coordinated entirely within the
goal-directed architecture.

Bringing the whole of system functionality within the fold
would not be possible without the clean separation of data
management from data transport.

Theme: Join Navigation with Attitude Control

Navigation and attitude control must build from a common
mathematical base⎯Navigation and attitude control have
been weakly coupled on most JPL missions because, in
empty space, they operate on vastly different time scales
and their dynamics usually don’t greatly affect each other.
As such, navigation software and attitude control software
have been largely independent development efforts and the
interfaces between them have been ad hoc. In upcoming
missions, however, the coupling becomes much tighter. For
example, escape velocity near an asteroid is so small that
firing thrusters for attitude control can significantly affect
the trajectory of an orbiting spacecraft. Likewise, docking
with another vehicle, as in a sample-return mission, requires
navigation and attitude corrections on similar time scales.

The approach that MDS is taking here, as in other areas, is
to design common architectural mechanisms for common
problems. Since the same forces influence navigation and
attitude control, the architecture must allow for a common

model; since both are solving geometry problems, the
architecture must provide for common solvers.

Theme: Instrument the Software

Instrument the software to gain visibility into its operation,
not just during testing but also during operation⎯Perhaps
the most vexing problem that operators face during a
mission emergency is in not having enough information
about what’s happening inside the spacecraft to explain
some anomalous behavior. Software developers face the
same problem during system testing (albeit in less stressful
circumstances) and they traditionally address the problem
by adding temporary, ad hoc “instrumentation”, i.e.,
software instructions that output some internal state. Such
instrumentation is often removed later, either because it
generates too much output or because it reduces
performance or because it bypasses the downlink
subsystem, outputting directly to a testbed console. Such
adding and removing of temporary code is messy at best
and error-prone at worst.

To address the need in a standard way⎯as Mars Pathfinder
and Deep Space One did⎯MDS defines an “event logging
framework” (ELF) that provides a standard mechanism for
logging noteworthy events, whether generated on the flight
side or ground side. Importantly, ELF allows operators to
control the nature and amount of logging by controlling
“entry policy” parameters such as event severity level, event
IDs, and event reporting frequency. ELF reporting functions
are designed for speed in discarding events disabled by the
entry policy, so instrumentation (i.e., ELF calls) can
generally be left in place, even in flight code. The net result
is that software instrumentation is encouraged because it
can be controlled at run time by ground operators and
therefore can remain as a permanent part of the software,
providing value not just during system testing but also
during mission operations.

Logically, ELF provides a specialized interface to Data
Management and therefore capitalizes on its capabilities for
accumulating value histories, for summarizing them, and for
discarding old and/or less important data products in order
to make room for new data products.

Theme: Upward Compatibility

Design interfaces to accommodate foreseeable advances in
technology⎯MDS is intended to serve missions for many
years to come, and during that time there will be numerous
advances in software technology for control systems, fault
detection & diagnosis, planning & scheduling, databases,
communication protocols, etc. MDS must be prepared to
exploit such technologies else it will become an obstacle
rather than an enabler for increasingly challenging missions,
but MDS also needs to maintain some architectural stability
to amortize its cost over its missions. The strategy for
achieving this centers around careful design of architectural
interfaces, behind which a variety of technical approaches
can be used. Specifically, MDS designers consult with

researchers to understand how software interfaces may need
to evolve, and then implement a restricted subset of an
interface using current mission-ready technology. When the
more advanced technology becomes mission-ready, they
implement the fuller interface in an upward compatible
manner, namely, in a manner that still works for interface
clients that use the restricted subset. Thus, interface client
software is not forced to change on the same schedule as
interface provider software.

The value of upward compatibility is powerfully illustrated
in the history of IBM. In 1964 when IBM introduced the
System/360 architecture, they transformed the computer
industry with the first “compatible” family of computers.
Software and peripherals worked virtually interchangeably
on any of the five original processors, so customer
investments were preserved when they upgraded to a more
powerful processor. IBM continued to improve the
technology over the years, but always within the
System/360 architecture and its extensions. Although the
MDS architecture applies to a much smaller marketplace,
the benefits of upward compatibility make sense for MDS
customers and providers.

5. CUSTOMER BENEFITS
The main value of MDS is that it should enable customer
missions to focus on mission-specific design and
development without having to create and test a supporting
infrastructure. Customers will receive a set of pre-integrated
and pre-tested frameworks, complete with executable
example uses of those frameworks running on a simulated
spacecraft and mission. These frameworks will be based on
an object-oriented design described in Unified Modeling
Language (UML) [5], the lingua franca of MDS software
design and scenario description.

As a project, MDS is balancing a long-term architectural
vision against a near-term commitment to its first customer
mission, Europa Orbiter, scheduled to launch in 2003. Such
commitments help focus MDS design efforts on pragmatic,
well-understood mechanisms for supporting the
architectural themes.

6. RELATED WORK
Software Architecture

As Shaw and Garlan have wisely observed, “good
architectural design has always been a major factor in
determining the success of a software system” [3]. Of four
major categories of activities is software architecture, MDS
is squarely in the category of “frameworks for specific
domains”, in the same vein as DARPA’s domain-specific
software architecture (DSSA) program [1,2]. The MDS
frameworks are being described in Unified Modeling
Language (UML) [4], while recognizing that it has
limitations as an architecture description language, most
notably for its lack of descriptions of connectors and

interfaces as first-class entities and descriptions of
hierarchical organization [5].

Shaw and Garlan also note that most systems typically
involve a combination of architectural styles [3, chapter 2],
and that’s certainly true of MDS, given its scope as a
unified flight-ground control and data system. Perhaps the
most conspicuous architectural styles in MDS are closed-
loop process control (in support of conventional feedback
control systems as well as goal-achieving modules), state
transition systems (in support of “reactive” discrete-state
control systems), and hierarchical combination (reflecting
delegation of sub-goals by goal-achieving modules). Also,
the style of data abstraction and object-oriented
organization pervades the MDS architecture.

Remote Agent Project

In a 1995 joint study between NASA Ames and JPL known
as the New Millennium Autonomy Architecture Prototype
(NewMAAP) a number of existing concepts for improving
flight software were brought together in a prototype form.
These concepts included goal-based commanding, closed-
loop control, model-based diagnosis, onboard resource
management, and onboard planning. When the Deep Space
One (DS-1) mission was subsequently announced as a
technology validation mission, the NewMAAP project
rapidly segued into the Remote Agent project [6]. In May
1999 the Remote Agent eXperiment (RAX) flew on DS-1
and provided the first in-flight demonstration of the
concepts. The MDS project, which is populated with many
people who worked on or with RAX, was established in
April 1998 to define and develop an advanced multi-
mission data system that unifies the flight, ground, and test
elements in a common architecture. That architecture is
shaped with the themes described in this paper, some of
which were explored and refined by the RAX experience.

Altairis Mission Control System

The Altairis Mission Control System (Altairis MCS) is a
distributed, object-oriented commercial-off-the-shelf
(COTS) satellite command and control system [7]. Altairis
MCS is positioned as a ground-based mission control
system built on a fully distributed CORBA-compliant
architecture that can be distributed across networks of
mixed UNIX and Windows NT computers. At a conceptual
level, Altairis MCS shares some of the themes described in
this paper. In particular, it emphasizes the central role of
state and models in organizing a control system, with
mission-specific extensions clearly separated from core
software. Extensions primarily consist of finite state
models—organized hierarchically—along with procedural
scripts and data definition files. State transitions are
composed of a required entry state, target state, executor,
and latency. Operation is based on commanding of user-
defined state transitions, where a transition is immediately
executed (transitions to the target state) only if the
associated state machine is already in the required entry
state. In comparison, MDS operation is based on issuance of

goals, which are specifications of desired state for a time
interval in the future, regardless of current state. In addition,
temporally overlapping goals on the same state variable are
allowed, as long as they are mutually compatible.

7. ACKNOWLEDGEMENTS
The research and design described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

REFERENCES
[1] “Collected Overview Reports from the DSSA Project”,
Will Tracz, editor. Lockheed Martin Federal Systems,
Owego, NY, September 1995.

[2] Proceedings of the Workshop on Domain-Specific
Software Architectures, Software Engineering Institute,
Hidden Valley, Pennsylvania, July 1990.

[3] “Software Architecture: Perspectives on an Emerging
Discipline”, Mary Shaw and David Garlan, Prentice Hall,
1996.

[4] The Unified Modeling Language User Guide, Grady
Booch, James Rumbaugh, and Ivar Jacobsen, Addison
Wesley, 1999.

[5] “Is UML an Architecture Description Language?” in
OOPSLA 99 Companion, Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Association for Computing Machinery, November 1999.

[6] “An Autonomous Spacecraft Agent Prototype,” B. Pell,
D. Bernard, S. Chien, E. Gat, N Muscettola, P. Nayak, M.
Wagner, B. Williams, Proceedings of the First Annual
Workshop on Intelligent Agents, Marina Del Rey, CA,
1997.

[7] Altairis Mission Control System, Altair Aerospace
Corporation, http://www.altaira.com.

Daniel Dvorak is a researcher in
the Exploration Systems Autonomy
section at the Jet Propulsion
Laboratory, California Institute of
Technology, where his interests
have focused on state estimation,
fault detection, and diagnosis, as
well as verification of autonomous
systems. Prior to 1996 he worked
at Bell Laboratories on the moni-
toring of telephone switching systems and on the design and
development of R++, a rule-based extension to C++. Dan
holds a BS in electrical engineering from Rose-Hulman
Institute of Technology, an MS in computer engineering
from Stanford University, and a Ph.D. in computer science
from The University of Texas at Austin.

Robert Rasmussen is a principal
engineer in the Avionic Systems
Engineering section at the Jet
Propulsion Laboratory, California
Institute of Technology, where he
is the Mission Data System
architect. He holds a BS, MS, and
Ph.D. in Electrical Engineering
from Iowa State University. He
has extensive experience in space-
craft attitude control and computer systems, test and flight
operations, and automation and autonomy — particularly
in the area of spacecraft fault tolerance. Most recently, he
was cognizant engineer for the Attitude and Articulation
Control Subsystem on the Cassini mission to Saturn.

Glenn Reeves is a senior engineer
in the Autonomy and Control
section at the Jet Propulsion
Laboratory, California Institute of
Technology, where he is a member
of the Mission Data System project
team. Prior to MDS he was the
lead engineer for the Mars
Pathfinder lander flight software
development. Glenn holds a BS in
computer science from California State Polytechnic Uni-
versity, Pomona.

Allan Sacks is manager of the
Mission Data System Office in the
Telecommunications and Mission
Operations Directorate at the Jet
Propulsion Laboratory, California
Institute of Technology. Prior to
MDS he managed the Mars
Pathfinder Ground Data System
project, 1992–1997. This work led
to concurrent engineering
activities at JPL among ground system, flight system, and
mission operations that have been critical in reducing

project risks and cost. Al also served as deputy manager of
the Space Flight Operations Center Project, 1988–1992.

